Advances in nowcasting influenza-like illness rates using search query logs
نویسندگان
چکیده
User-generated content can assist epidemiological surveillance in the early detection and prevalence estimation of infectious diseases, such as influenza. Google Flu Trends embodies the first public platform for transforming search queries to indications about the current state of flu in various places all over the world. However, the original model significantly mispredicted influenza-like illness rates in the US during the 2012-13 flu season. In this work, we build on the previous modeling attempt, proposing substantial improvements. Firstly, we investigate the performance of a widely used linear regularized regression solver, known as the Elastic Net. Then, we expand on this model by incorporating the queries selected by the Elastic Net into a nonlinear regression framework, based on a composite Gaussian Process. Finally, we augment the query-only predictions with an autoregressive model, injecting prior knowledge about the disease. We assess predictive performance using five consecutive flu seasons spanning from 2008 to 2013 and qualitatively explain certain shortcomings of the previous approach. Our results indicate that a nonlinear query modeling approach delivers the lowest cumulative nowcasting error, and also suggest that query information significantly improves autoregressive inferences, obtaining state-of-the-art performance.
منابع مشابه
Predicting Flu Incidence from Portuguese Tweets
Social media platforms encourage people to share diverse aspects of their daily life. Among these, shared health related information might be used to infer health status and incidence rates for specific conditions or symptoms. In this work, we evaluate the use of Twitter messages and search engine query logs to estimate the incidence rate of influenza like illness in Portugal. Based on a classi...
متن کاملEstimating Influenza Outbreaks Using Both Search Engine Query Data and Social Media Data in South Korea
BACKGROUND As suggested as early as in 2006, logs of queries submitted to search engines seeking information could be a source for detection of emerging influenza epidemics if changes in the volume of search queries are monitored (infodemiology). However, selecting queries that are most likely to be associated with influenza epidemics is a particular challenge when it comes to generating better...
متن کاملAge-Related Differences in the Accuracy of Web Query-Based Predictions of Influenza-Like Illness
BACKGROUND Web queries are now widely used for modeling, nowcasting and forecasting influenza-like illness (ILI). However, given that ILI attack rates vary significantly across ages, in terms of both magnitude and timing, little is known about whether the association between ILI morbidity and ILI-related queries is comparable across different age-groups. The present study aimed to investigate f...
متن کاملAdaptive nowcasting of influenza outbreaks using Google searches
Seasonal influenza outbreaks and pandemics of new strains of the influenza virus affect humans around the globe. However, traditional systems for measuring the spread of flu infections deliver results with one or two weeks delay. Recent research suggests that data on queries made to the search engine Google can be used to address this problem, providing real-time estimates of levels of influenz...
متن کاملUsing Web and social media for influenza surveillance.
Analysis of Google influenza-like-illness (ILI) search queries has shown a strongly correlated pattern with Centers for Disease Control (CDC) and Prevention seasonal ILI reporting data. Web and social media provide another resource to detect increases in ILI. This paper evaluates trends in blog posts that discuss influenza. Our key finding is that from 5th October 2008 to 31st January 2009, a h...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 5 شماره
صفحات -
تاریخ انتشار 2015